DOI:10.19595/j.cnki.1000-6753.tces.201465

基于相差调控的无线电能传输系统耦合 机构结构电磁力的平抑

王奉献 1,2 张 献 1,2 杨庆新 1,2 沙 琳 3 任年振 3 付志远 3

(1. 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学) 天津 300130

2. 河北工业大学河北省电磁场与电器可靠性重点实验室 天津 300130

3. 天津市电气装备智能控制重点实验室(天津工业大学) 天津 300387)

摘要 运行在高频电磁场环境下的无线电能传输系统受到电磁力的作用,长期作用将导致磁 屏蔽结构损坏、线圈变形、绝缘破坏等问题。该文为削弱结构电磁力对无线电能传输系统耦合机 构的影响,首先从频域角度分析无线电能传输系统耦合机构所受结构电磁力特性,确定结构电磁 力作用特性与流经耦合线圈的电流相位之间的关系;然后提出一种基于相差调控的结构电磁力平 抑方法,利用双线并行型耦合结构,通过调节串接在某发射线圈支路的可调支路电感量,实现对 流经耦合线圈的电流相位的调控;最后实现耦合机构宏观受力表现的削弱,同时搭建实验平台验 证平抑方法的有效性。

关键词:无线电能传输 电磁力 相差调控 平抑方法 中图分类号:TM724

Electromagnetic Force Suppression of the Coupling Mechanism Structure of WPT System Based on Phase Difference Control

Wang Fengxian^{1,2} Zhang Xian^{1,2} Yang Qingxin^{1,2} Sha Lin³ Ren Nianzhen³ Fu Zhiyuan³
(1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei Vniversity of Technology Tianjin 300130 China

3. Key Laboratory of Intelligent Control of Electrical Equipment Tiangong University Tianjin 300387 China)

Abstract The wireless power transmission system operating in the high-frequency electromagnetic field environment is subjected to electromagnetic force, and the long-term action will cause damage to the magnetic shield structure, coil deformation, and insulation damage. This article is about weakening the influence of structure electromagnetic force on the coupling mechanism of wireless power transmission system. First, analyze the structural electromagnetic force characteristics of the coupling mechanism of the wireless power transmission system from the perspective of frequency domain, and determine the relationship between the structural electromagnetic force characteristics and the phase of the current flowing through the coupling coil. Second, a structural electromagnetic force suppression scheme based on phase difference control is proposed. Using a two-wire parallel coupling structure, by adjusting the inductance of the adjustable branch connected in series to a certain transmitting coil branch, the phase of the current flowing through the coupling through the coupling coil can be adjusted.

国家自然科学基金项目(51977147,51807138)和河北省高等学校科学研究项目(QN2021043)资助。 收稿日期 2020-11-01 改稿日期 2021-04-23 Finally, the macroscopic force performance of the coupling mechanism is weakened. At the same time, an experimental platform was built to verify the effectiveness of the method.

Keywords: Wireless power transmission, electromagnetic force, phase difference control, suppression scheme

0 引言

大功率无线电能传输技术克服了接触式电能传 输的缺点与局限性,受到商用电动汽车行业^[1]、轨 道交通运输业^[2]、港口集装箱运输业等领域的广泛 关注^[3-4]。随着无线电能传输技术输电功率等级的提 高,线圈作为能量转换的载体将承担更大电流冲击 并建立更强电磁场强度的耦合电磁场,在某些特殊 用电环境下流经线圈的电流可达到千安级别。根据 电磁场理论可知,带电微小粒子在电磁场中将受到 力的作用^[5],故无线电能传输系统耦合结构间的高 频耦合电磁场将对双侧耦合线圈及磁屏蔽层等结构 产生力的作用,当该作用力长期周期性地施加在无 线电能传输系统耦合机构上,将导致连接构件的松 动、主体结构的断裂并降低器件的使用寿命^[6]。

电磁力作为四种基础作用力,广泛存在于各类 电气装备中[7-10]。但是目前针对无线电能传输系统 的研究主要集中在阻抗匹配[11]、线圈结构优化[12,13]、 传输距离[14]等方面,针对大功率无线电能传输系统 所受电磁力的研究尚处于起步阶段。文献[15]提出 一种基于无线电能传输技术的微小型机器人设计方 案,在实现无线能量供应的同时,由接收线圈构成 的微小型机器人将受到电磁力和电磁力矩的作用, 实现微小型机器人的推动。文献[16]提出一种基于 三组亥姆霍兹线圈结构的微小型机器人, 该结构的 外源发射机构可在三个维度上产生匀强磁场。该团 队提出一种三线圈三轴 AC/DC 结构,在传统的线圈 结构基础上增加直流线圈组为微小型机器人提供驱 动作用力,而交流线圈组用以实现能量的无线传递。 文献[17]从麦克斯韦应力张量计算出发,获得无线 电能传输系统耦合机构结构受力解析表达,并将其 耦合机构结构受力视为稳态及周期作用的总合。分 别从时域和频域的角度对无线电能传输系统耦合机 构结构力特性进行分析。然而关于大功率无线电能 传输系统耦合机构结构电磁力的有效平抑方法的研 究尚处于起步阶段[18]。

本文为削弱结构电磁力对耦合机构的影响,提 出一种基于相差调控的结构电磁力平抑方法,利 用双线并行型耦合机构,通过串接在某一发射线 圈支路的可调支路电感实现相差调控。为验证该 方案的可行性,从频域角度对结构电磁力的基础特 性进行分析,确定结构电磁力与流经耦合线圈的电 流相位之间的关系,为本方案提供理论指导依据。 并分析可调支路电感值对系统电气参数的影响, 确定能否通过调节可调支路值实现相差调控。通 过有限元软件搭建结构电磁力平抑仿真模型,得 到耦合机构所受结构电磁力随可调支路电感值的 变化规律。最终搭建实验平台验证了平抑方法的 可行性。

1 基于相差调控的结构电磁力平抑方法

1.1 耦合机构结构电磁力频域分析

为削弱结构电磁力对耦合线圈的影响,通过邻 近线圈电流的相位错位,实现对邻近线圈所受结构 电磁力的错峰控制,同时由错相位电流相互叠加形 成的空间电磁场将对耦合机构磁屏蔽层产生影响。 提出一种双线并行型耦合机构结构,此时耦合线圈 为双层叠放形式,其中某发射线圈支路串接可调支 路电感,本文提出的双线并行型无线电能传输系统 结构示意图如图1所示。通过调节串接在某发射线 圈的可调支路电感对邻近线圈进行相差调控,实现 对邻近线圈所受电磁力的错峰控制,最终实现整体 耦合机构所受电磁力的削弱。首先对耦合机构受力 情况进行频域分析。

图 1 双线并行型耦合机构示意图

Fig.1 Two-wire parallel coupling mechanism diagram

依据受力对象,耦合机构所受结构电磁力可划 分为耦合线圈受力和磁屏蔽层受力。首先对耦合线 圈所受电磁力进行分析。为保证无线电能传输系统 处于最佳谐振点,即维持最大系统传输效率,无线 电能传输系统需保证逆变桥电路输出频率与耦合线 圈谐振频率一致。当无线电能传输系统工作于谐振 状态时,流经双侧耦合线圈的高频电流可用标准正 弦函数表示为 第37卷第1期

式中, φ_{JT} 为发射线圈电流相位; φ_{JR} 为接收线圈的 电流相位; $\varphi_{JT} = \varphi_{JR}$ 相差 $\pi/2$; j_Q 为线圈电流密度有 效值;角标 T、R 分别代表发射侧、接收侧。

首先分析耦合线圈所受电磁力。由麦克斯韦应 力法可知,处于高频谐振状态的耦合线圈所受电磁 力密度正比于流经该线圈的高频电流的二次方,则 双侧耦合线圈所受电磁力密度可表示为

$$f_{J_{Q}} \propto J_{Q}^{2}(t) + J_{T}(t)J_{R}(t) = 2j_{Q}^{2}e^{2j\varphi_{Q}} + 2j_{T}j_{R}e^{j(\varphi_{T}+\varphi_{R})} = j_{Q}^{2}2e^{2j\varphi_{J_{Q}}} + j_{T}j_{R}2e^{2j\left(\frac{\varphi_{T}+\varphi_{R}}{2}\right)} + j_{T}j_{R}\left[\cos(\varphi_{JT}-\varphi_{JR})-1\right]\Big|_{Q=T,F}$$
(2)

式中, *j*_T、*j*_R分别为发射侧线圈与接收侧线圈电流密度有效值。

将流经双侧耦合线圈的电流密度 J_T(*t*)、J_R(*t*)的 相位关系代入后,可得双侧耦合线圈所受电磁力密 度与线圈电流有效值及相位的关系为

$$\begin{cases} f_{JT} \propto j_{T}^{2} [1 - \cos(2\omega t + 2\varphi_{JT})] + j_{T} j_{R} \sin(2\omega t + 2\varphi_{JT}) \\ f_{JR} \propto j_{R}^{2} [1 + \cos(2\omega t + 2\varphi_{JT})] + j_{T} j_{R} \sin(2\omega t + 2\varphi_{JT}) \end{cases}$$
(3)

式中, w为耦合线圈谐振频率。

同理,处于谐振状态的无线电能传输系统耦合 空间中磁感应强度的标准正弦表达式为

$$B(t) = \sqrt{2B}\sin(\omega t + \varphi_B) \tag{4}$$

式中, B 为磁感应强度有效值; φ_B 为磁感应强度相位; ω 为空间电磁场变化频率, 与耦合线圈谐振频率 一致。

针对磁屏蔽层所受结构电磁力,根据麦克斯韦 应力法可得磁屏蔽层表面电磁力张量为

$$\boldsymbol{p} = \frac{1}{\mu_0} (\boldsymbol{n} \cdot \boldsymbol{B}) B - \frac{1}{2\mu_0} B^2 \boldsymbol{n}$$
 (5)

式中, μ_0 为真空磁导率, $\mu_0=4\pi \times 10^{-7}$ N·A⁻²; *n* 为垂 直于磁屏蔽层表面的单位向量。

将磁感应强度的标准正弦表达形式代入后,可 得磁屏蔽层表面电磁力张量与磁感应强度有效值及 相位关系为

$$\boldsymbol{p} = \left[\frac{1}{\mu_0}B^2 - \frac{1}{\mu_0}B^2\cos(2\omega t + 2\varphi_B)\right]\boldsymbol{n} \qquad (6)$$

通过对无线电能传输系统耦合机构不同构件所 受电磁力在频域下的分析可知,受流经耦合线圈的 高频交流电流及耦合空间内时变电磁场影响,结构 电磁力周期性作用于耦合机构不同构件上,且结构 电磁力的周期作用频率为系统谐振频率的两倍。耦 合机构不同构件所受电磁力的作用方向存在差异性, 其中双侧耦合线圈所受电磁力周期分量的方向相反; 由于无线电能传输系统耦合空间内磁场分布的特殊 性,即旋转对称性,双侧磁屏蔽层所受电磁力的周期 分量的方向相反;同时同侧耦合线圈和磁屏蔽层所 受电磁力的周期分量方向相反。根据式(3)和式(6) 可知,耦合线圈及磁屏蔽层所受电磁力的周期分量 与流经双侧耦合线圈的电流的相位有关,故利用耦 合机构不同构件所受电磁力周期分量的差异性,在 基本维持功率恒定的基础上,调整流经耦合线圈的 电流的相位,实现耦合机构整体受力表达的削弱。

1.2 双线并行型无线电能传输系统分析

为削弱结构电磁力对耦合线圈的影响,通过调 节邻近线圈内电流的相位差,实现对邻近线圈所受 电磁力的错峰控制,同时由错相位电流相互叠加形 成的空间电磁场将对耦合机构磁屏蔽层产生影响。 本文提出一种双线并行的发射线圈结构,通过邻近 线圈之间的相差调控,实现对邻近线圈所受电磁力 的错峰控制,最终实现无线电能传输系统整体耦合 机构所受电磁力的削弱。

与传统无线电能传输系统耦合机构相比,双线并 行型发射线圈结构的无线电能传输系统耦合机构发 射侧耦合线圈为双层叠放形式。流经耦合线圈的高 频电流的相位与系统的电路拓扑有关,对于双线并 行型发射线圈结构的无线电能传输系统而言,可通过 在某一发射线圈支路串接可调支路电感实现相差调 控。为验证平抑方法的有效性,需讨论调节串接的可 调电感值时流经耦合线圈的高频电流的变化情况。

为简化分析,可将双线并行型耦合结构视为三 线圈结构,图2为双线并行型无线电能传输系统等 效电路。假设无线电能传输系统逆变桥输出为理想 电压源 U_s,接收侧线圈连接负载 R_L,各线圈支路为 独立谐振电路。

wireless power transfer system

144

并规定

$$\begin{cases} \omega = \frac{1}{\sqrt{L_{1}C_{1}}} = \frac{1}{\sqrt{L_{2}C_{2}}} = \frac{1}{\sqrt{L_{r}C_{r}}} \\ Z_{1} = R_{1} + j\omega L_{1} + \frac{1}{j\omega C_{1}} + j\omega\Delta L \\ Z_{2} = R_{2} + j\omega L_{2} + \frac{1}{j\omega C_{2}} \\ Z_{r} = R_{Lr} + j\omega L_{r} + \frac{1}{j\omega C_{r}} \\ R_{Lr} = R_{r} + R_{L} \end{cases}$$
(7)

式中, R_1 、 R_2 分别为两发射线圈的等效电阻; R_r 为接收线圈的等效电阻; L_1 、 L_2 、 L_r 分别为两发射 线圈及接收线圈的等效电感; M_{1r} 、 M_{2r} 分别为两 发射线圈与接收线圈之间的互感; M_{12} 为两发射 线圈之间的互感; I_1 、 I_2 、 I_r 分别为流经两发射线 圈及接收线圈的电流; C_1 、 C_2 、 C_r 分别为两发射 线圈支路及接收线圈支路的补偿电容; ΔL 为可调 支路电感。

根据网孔电流法可得

$$\begin{bmatrix} \dot{U}_{s} \\ \dot{U}_{s} \\ 0 \end{bmatrix} = \begin{bmatrix} Z_{1} & j\omega M_{12} & j\omega M_{1r} \\ j\omega M_{12} & Z_{2} & j\omega M_{2r} \\ j\omega M_{1r} & j\omega M_{2r} & Z_{r} \end{bmatrix} \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2} \\ \dot{I}_{r} \end{bmatrix}$$
(8)

经过化简可得各支路电流为

$$\begin{cases}
\dot{I}_{1} = \left(\omega^{2}M_{2r}^{2} - \omega^{2}M_{1r}M_{2r} + R_{2}R_{Lr} - j\omega M_{12}R_{Lr}\right)\dot{U}_{s}A \\
\dot{I}_{2} = \left(\omega^{2}M_{1r}^{2} - \omega^{2}M_{1r}M_{2r} + R_{1}R_{Lr} - j\omega M_{12}R_{Lr} + j\omega R_{Lr}\Delta L\right)\dot{U}_{s}A \\
\dot{I}_{r} = -\left[\omega^{2}M_{12}\left(M_{1r} + M_{2r}\right) + j\omega\left(M_{1r}R_{2} + M_{2r}R_{1}\right)\right]\dot{U}_{s}A \\
\end{cases}$$
(9)

其中

$$A = \frac{1}{A_{\rm Re} - A_{\rm Im}} \tag{10}$$

并满足

$$\begin{cases} A_{\rm Re} = R_{\rm I}R_{\rm 2}R_{\rm Lr} + \omega^2 \left[M_{\rm 1r}^2 R_{\rm 2} + M_{\rm 2r}^2 (R_{\rm I} + j\omega\Delta L) + M_{\rm 12}^2 R_{\rm Lr} \right] \\ A_{\rm Im} = j\omega^3 M_{\rm 2r} (2M_{\rm 12}M_{\rm 1r} - M_{\rm 2r}\Delta L) - j\omega R_{\rm 2}R_{\rm Lr}\Delta L \end{cases}$$
(11)

则串接可调支路电感的发射线圈支路与未串接 可调支路电感的发射线圈支路之间的电流比值及电 流相位差可表示为

$$\begin{cases} A_{\rm m} = \left| \frac{I_{\rm l}}{I_{\rm 2}} \right| = \frac{\sqrt{\omega^2 M_{12}^2 R_{\rm Lr}^2 + [R_{\rm Lr} R_{\rm 2} - \omega^2 M_{\rm 2r} (M_{\rm 1r} - M_{\rm 2r})]^2}}{\sqrt{(\omega R_{\rm Lr} \Delta L - \omega M_{12} R_{\rm Lr})^2 + [R_{\rm Lr} R_{\rm 1} + \omega^2 M_{\rm 1r} (M_{\rm 1r} - M_{\rm 2r})]^2}} \\ \\ \tan \varphi = \frac{\omega R_{\rm Lr} \left\{ -R_{\rm Lr} [M_{12} (R_{\rm 1} - R_{\rm 2}) + R_{\rm 2} \Delta L] - \omega^2 (M_{\rm 1r} - M_{\rm 2r}) [-M_{\rm 2r} \Delta L + M_{12} (M_{\rm 1r} + M_{\rm 2r})] \right\}}{R_{\rm Lr}^2 R_{\rm 1R} R_{\rm 2} + \omega^2 R_{\rm Lr} [M_{12} (M_{\rm 12} - \Delta L) R_{\rm Lr} + (M_{\rm 1r} - M_{\rm 2r}) (M_{\rm 1r} R_{\rm 2} - M_{\rm 2r} R_{\rm 1})] - \omega^4 M_{\rm 1r} M_{\rm 2r} (M_{\rm 1r} - M_{\rm 2r})^2} \end{cases}$$
(12)

由于线圈线径远大于双侧线圈之间的传输距离, 忽略空间垂直距离引起的互感偏差,假定 $M_{1r}=M_{2r}=M_{ir}$,即两发射线圈与接收线圈之间的互感 相同。同时为简化分析,规定各线圈内阻相同,即 $R_1=R_2=R_1$,对式(12)进行化简可得两发射线圈支路 之间的电流比值及电流相位差分别为

$$\begin{cases} A_{\rm m} = \left| \frac{I_{\rm l}}{I_{\rm 2}} \right| = \frac{\sqrt{\omega^2 M_{12}^2 R_{\rm Lr}^2 + R_{\rm l}^2 R_{\rm Lr}^2}}{\sqrt{(\omega R_{\rm Lr} \Delta L - \omega M_{12} R_{\rm Lr})^2 + R_{\rm l}^2 R_{\rm Lr}^2}} \\ \tan \varphi = \frac{-\omega R_{\rm Lr}^2 R_{\rm l} \Delta L}{R_{\rm Lr}^2 R_{\rm l}^2 + \omega^2 R_{\rm Lr}^2 (M_{12}^2 - M_{12} \Delta L)} \end{cases}$$
(13)

通过式(13)可知,调节串接的可调支路电感 值,一方面导致两发射线圈支路之间高频电流比的 模值改变,另一方面引起流经两发射线圈的高频电 流的相位变化,验证了本节提出的通过在某一发射 线圈支路串接可调支路电感实现相差调控这一方法 的有效性。

双线并行结构的无线电能传输系统效率为

$$\eta = \frac{I_{\rm r}^2 R_{\rm L}}{I_{\rm l}^2 R_{\rm l} + I_{\rm 2}^2 R_{\rm 2} + I_{\rm r}^2 R_{\rm Lr}} = \frac{R_{\rm L}}{\left(\frac{I_{\rm l}^2}{I_{\rm r}^2} + \frac{I_{\rm 2}^2}{I_{\rm r}^2}\right) R_{\rm l} + R_{\rm Lr}} = \frac{R_{\rm L}}{X + R_{\rm Lr}}$$
(14)

其中

$$X = \frac{\left(R_{2}^{2}R_{Lr}^{2} + \omega^{2}M_{12}^{2}R_{Lr}^{2}\right)R_{1} + \left[R_{1}^{2}R_{Lr}^{2} + \omega^{2}R_{Lr}^{2}(M_{12} - \Delta L)^{2}\right]R_{2}}{\omega^{2}M_{ir}^{2}\left[4\omega^{2}M_{12}^{2} + \left(R_{1} + R_{2}\right)^{2}\right]}$$
$$= \frac{2R_{1}^{3}R_{Lr}^{2} + \omega^{2}R_{Lr}^{2}R_{I}[2M_{12}(M_{12} + \Delta L) + \Delta L^{2}]}{4\omega^{2}M_{ir}^{2}\left(\omega^{2}M_{12}^{2} + R_{1}^{2}\right)}$$
(15)

由此可知,在某一发射线圈支路串接可调支路 电感将引起系统传输效率的变化,故本文提出的基 于相差调控的无线电能传输系统耦合机构结构电磁 力平抑方法,在调节串接在某一发射线圈支路的可 调支路电感时,需考虑到该过程引起的系统传输效 率的变化情况。

2 结构电磁力平抑仿真模型分析

为验证上文所提出的耦合机构结构电磁力平抑

方法,利用有限元分析软件搭建仿真模型,基于相差调控的结构电磁力平抑有限元模型图如图 3 所

示,其仿真模型耦合机构参数见表1。

图 3 基于相差调控的结构电磁力平抑有限元模型图 Fig.3 Finite element model diagram of structural

electromagnetic force suppression

表1 仿真模型耦合机构

Tab.1 Coupling mechanism parameters of simulation model

参数	数 值	描 述
I/A	100	发射线圈电流
<i>f</i> /kHz	10	谐振频率
r/cm	0.4	导线半径
n	6	绕制圈数
$R_{\rm l}/{\rm cm}$	22.6	线圈外径
<i>d</i> /cm	2	匝间距
<i>h</i> /cm	10	传输距离
$R_{ m Lr}/\Omega$	9	负载电阻
$R_{ m l}/\Omega$	0.1	线圈支路等效电阻
$M_{12}/\mu\mathrm{H}$	39.32	发射线圈之间互感
$M_{ m ir}/\mu{ m H}$	18.22	发射线圈与接收线圈之间互感

同时为直观表达可调支路电感与线圈电感之间 的关系,规定 $m=\Delta L/L_1$ 。

2.1 可调支路电感对系统电气参数的影响分析

根据 1.2 节对双线并行型无线电能传输系统分 析,串接可调支路电感,会对系统传输效率产生作 用。考虑到实际应用,在相同功率等级下传输效率 须满足工程要求,首先对可调支路电感对系统传输 效率的影响进行分析。

双线并行结构的无线电能传输系统传输效率随 可调支路电感 ΔL 的变化情况如图 4 所示。随着可

调支路电感的增大,无线电能传输系统传输效率随 之下降。为保证本文提出的干预邻近线圈内电流的 相位差,实现对邻近线圈所受电磁力的错峰控制方 案的工程实用性,即保证系统传输效率的平稳,可 调支路电感满足条件 *m*≤0.5。

规定串接可调支路电感的线圈支路的电流相位 滞后于未串接可调支路电感的线圈支路的电流相位 的角度为滞后角。图 5 所示为双线并行结构的无线 电能传输系统两发射线圈支路之间的电流比的模值 以及滞后角随可调支路电感 ΔL 的变化情况。流经可 调支路电感所在发射线圈支路的电流随着可调支路 电感的增大,其与未串接可调支路电感的发射线圈 支路电流比的模值增大,同时串接可调支路电感与 未串接可调支路电感的发射线圈支路电流之间的滞 后角增大,即本文提出的双线并行结构的无线电能 传输系统通过某一发射线圈支路串接可调支路电 感,可实现邻近发射线圈之间的相位错位,从而实 现对邻近线圈所受电磁力的错峰控制,达到整体耦 合机构所受电磁力作用表达削弱的目的。在本文选 定的调节范围 m≤0.5 内,滞后角变化范围为-1.04°~ -1.93°,变化平坦与图4中系统效率变化情况一致。 需要注意到: 在现实应用中, 由于线圈之间的临近 效应或系统未工作在最佳谐振点时,线圈电流之间 存在相位差,但该相位差不可控。

inductance

通过可调支路电感对系统电气参数的影响分 析,验证 1.2 节理论的正确性。考虑到串接可调支 路电感引起的传输效率下降,选取 m≤0.5 作为调节 区间。为验证基于相差调控的耦合机构结构电磁力 平抑方法的有效性,分析串接的可调支路电感值对 流经两发射线圈的高频电流影响。随着可调支路电 感值的增大,串接可调支路电感的发射线圈支路电 流相比于未串接可调支路电感的发射线圈支路电 流,幅值增大的同时相位滞后,即通过调节串接的 可调支路电感值可间接实现对相位差的调控。

2.2 可调支路电感对结构电磁力的影响分析

发射侧耦合机构受力图如图 6 所示。对系统受 力方向进行规定,图 6 中为发射侧线圈受力标识, 本文规定以发射侧磁屏蔽层受力方向为正方向。由 于无线电能传输系统结构的对称性,耦合机构所受 结构电磁力空间上可分为垂直方向分力和水平方向 分力,其中水平方向所受合力为零。故对无线电能 传输系统耦合机构结构电磁力的平抑是对垂直方向 上结构电磁力的削弱。需注意本文所涉及的电磁力 大小均为其周期作用下的有效值。其中 *F*_{Jy} 与 *F*_{My} 表 示线圈以及磁屏蔽层所受垂直方向电磁力,*F*_{Jx} 表示 线圈所受水平方向电磁力。

双线并行结构的无线电能传输系统两发射线圈 所受垂直方向上电磁力分量随可调支路电感 Δ*L* 的 变化情况如图 7 所示。两发射线圈所受垂直方向上 电磁力分量 F_y 随可调支路电感的增加均减小,其中 串接可调支路电感的发射线圈所受电磁力的下降速 率快于未串接可调支路电感的发射线圈所受电磁力 的下降速率。由于临近线圈表面的空间电磁场随可 调支路电感 Δ*L* 的增大而减弱,未串接可调支路电 感的发射线圈所受垂直方向电磁力也随可调支路电 感 Δ*L* 发生变化。

branch inductance

无线电能传输系统耦合空间内电磁场由双侧线 圈共同激发产生。本文所提出的双线并行结构的无 线电能传输系统,通过串接支路电感的方式,使得 流经两发射线圈的电流相位出现移位,削弱了无线 电能传输系统耦合空间内电磁场强度。故增大可调 支路电感将引起两发射线圈所受垂直方向上电磁力 分量的减小。同时由于串接可调支路电感的发射线 圈在增大可调支路电感的过程中将处于次谐振状 态,故对串接可调支路电感的发射线圈而言,通过 调节可调支路电感而引起的电磁受力的下降程度大 于未串接可调支路电感的发射线圈。以*m*=0.2 为例, 串接可调支路电感的发射线圈与未串接可调支路电 感的发射线圈所受电磁力下降幅值分别为 36.85%、 39.44%。图 7 表明两发射线圈所受垂直方向上电磁 力分量均随着可调支路电感发生变化。为进一步说 明可调支路电感对耦合机构的影响,对双侧线圈以 及磁屏蔽层所受电磁力分量随可调支路电感 Δ*L* 的 变化情况进行分析。

双线并行结构的无线电能传输系统双侧线圈及 磁屏蔽层所受垂直方向上电磁力分量随可调支路电 感ΔL的变化情况如图8所示。由于串接可调支路电 感的作用,流经两发射线圈的电流出现移位现象,造 成无线电能传输系统耦合空间内空间电磁场强度的 削弱,故双侧线圈及磁屏蔽层所受垂直方向上电磁 力分量随可调支路电感的增大而减小。以 *m*=0.2 为 例,两发射线圈整体受力及发射侧磁屏蔽层受力的 下降幅度分别为 38.03%、43.36%,接收侧线圈及磁 屏蔽层所受电磁力下降幅度分别为 25.35%、15.26%。

Fig.8 Coupling mechanism stress changes with adjustable branch inductance

双线并行结构的无线电能传输系统双侧耦合机构所受垂直方向上电磁力分量随可调支路电感 ΔL 的变化情况如图 9 所示,其中 F_{Ty} 与 F_{Ry} 表示发射侧以及接收侧所受垂直方向电磁力。特别的 F_{Qy} = $F_{Jy}+F_{My}$ (Q=T, R),其中 F_{Jy} 与 F_{My} 表示所在侧线圈以及磁屏蔽层所受垂直方向电磁力。随着可调支路电感的增大,无线电能传输系统双侧耦合机构所受电磁力作用均减弱。以m=0.2 为例,发射侧耦合机构所受电磁力下降幅度分别为28.09%、29.48%,此时双线并行结构的无线电能传输系统的系统传输效率为 91.61%。

本节通过分析可调支路电感对耦合机构结构电 磁力的影响,验证本文提出的基于相差调控的结构 电磁力平抑方法的可行性。对于两发射线圈而言, 增大可调支路电感值将引起其所受结构电磁力作用 的削弱,其中串接可调支路电感的发射线圈所受电 磁力的下降速率快于未串接可调支路电感的发射线 圈所受电磁力的下降速率。对耦合机构不同构件及 整体受力情况进行分析,增大可调支路电感值均引 起其所受结构电磁力的下降,即本文提出的基于相 差调控的结构电磁力平抑方法有效。

3 结构电磁力平抑方法验证

本文提出的基于相差调控的结构电磁力平抑方 法,利用双线并行型发射线圈,通过调节串接在某 支路的可调电感值,实现流经两发射线圈的电流的 相位错位,最终实现耦合机构不同构件所受结构电 磁力错峰控制的目的。

为验证前文提出的基于相差调控的结构电磁力 平抑方法的可行性,搭建电气参数指标和结构参数 指标与前节结构电磁力平抑有限元模型的参数设置 一致的无线电能传输系统测试平台如图 10a 所示。利 用电磁力传感器对如图 10c 所示耦合机构测试点进 行测量,分析串接在某发射线圈支路的可调支路电 感值对无线电能传输系统耦合机构受力情况的影响。 可调支路电感如图 10b 所示,通过改变线圈缠绕的 圈数及间距,实现电感值的调节,并选择 0μH、 1.533μH、2.134μH、2.949μH、5.175μH、8.637μH、 11.303μH 和 14.283μH 共 8 挡电感量作为测试对象。

(a) 无线电能传输系统

图 10 无线电能传输系统测试平台

Fig.10 Wireless power transmission system test platform

为验证提出的基于相差调控的结构电磁力平抑 方法的有效性,首先需要确定通过改变可调支路电 感值能否引起流经两发射线圈的电流之间的相位错 位,从而引起临近的耦合机构构件所受电磁力的峰 值错位。

不同可调支路电感值下,流经两发射线圈的电流有效值以及相位关系的变化情况如图 11 所示。随着串接的可调支路电感值的增大,流经两发射线圈的电流有效值均减小,其中未串接可调支路电感的线圈支路的电流有效值的下降幅度大于串接可调支路电感量为 0μH 时,串接可调支路电感量为 0μH 时,串接可调支路电感和未串接可调支路电感的线圈支路的电流相位滞后于未串接可调支路电感的线圈支路的电流相位,且滞后 1.04°。当串接的电 6 國支路的电流相位,且滞后 1.04°。当串接的电 6 國支路的电流相位,且滞后 1.04°。当串接的电 6 國支路的电流相位,且滞后 1.04°。当串接的电 6 國支路的电流相位,1533μH 增至 14.283μH,增幅 832%时,串接可调支路电感的线圈支路电流有效值由 111.20A

下降至 108.36A,降幅为 2.55%;未串接可调支路电 感的线圈支路电流有效值由 98.68A 下降至 78.78A, 降幅为 20.17%;串接可调支路电感的线圈支路电流的相位 由 1.11°增至 1.92°,增幅 73%。随着可调支路电 感值的增大,串接可调支路电感的发射线圈支路电 流相比较于未串接可调支路电感的发射线圈支路电 流,幅值增大的同时相位滞后,即通过调节串接的 可调支路电感值可间接实现对相差的调控。与前文 基于相差调控的结构电磁力平抑模型仿真一致,验 证通过调节串接在某发射支路的可调电感值,可实 现串接可调支路电感的发射线圈支路电流与未串接 可调支路电感的发射线圈支路电流之间的相位错位。

通过电磁力传感器采集无线电能传输系统测试 平台在改变可调支路电感值时耦合机构受力变化情 况。由于无线电能传输系统耦合机构不同构件之间 为刚性连接,可选择特征点处受力情况对整体受力 情况进行评估, 故选择发射侧耦合机构测试点 3 处 作为特征点。图 12 所示为不同可调支路电感值下, 发射侧耦合机构测试点3处所受电磁力密度。注意 到电磁力传感器所采集的力学信号为被测物体与传 感器接触面上的电磁力,同时依据牛顿经典力学可 知,所采集到的力学信号反映了被测点处受力情况。 由图 12 可知,以电感量 0µH 为例,此时发射侧耦 合机构测试点 3 处所受电磁力密度最大值为 19N/mm², 电磁力的作用周期约为系统谐振周期的 一半,即电磁力的作用频率为系统谐振频率的2倍。 当可调支路电感值增大时,电磁力的幅值随之减小。 当电感量由 1.533µH 增大到 14.283µH 时, 电感量 增大至 9.32 倍,发射侧耦合机构测试点 3 处所受电 磁力密度幅值减小到原来的 30%~50%。与前文基于 相差调控的结构电磁力平抑模型仿真一致,验证通 过调节串接在某发射支路的可调电感值,可调节耦 合机构所受结构电磁力的大小。

不同可调支路电感值下发射侧耦合机构不同测 试点处所受电磁力密度的方均根值对比如图 13 所 示。在任意相同可调支路电感值下,发射侧耦合机 构测试点3处所受电磁力密度的方均根值最大,以 电感量14.283μH为例,其电磁力密度的方均根值最大,以 电感量14.283μH为例,其电磁力密度的方均根值为 4.4N/mm²,并随着测试点向两侧移动所受电磁力密 度随之下降。由于导磁屏蔽层结构非对称性,其中 临近耦合机构外侧的移动方向下降速率小于临近耦 合机构内侧的移动方向。保持测试点不变,随着串 接的可调电感值的增大,相同测试点处所受电磁力 密度减小。以测试点 2 为例,当电感量由 1.533μH 增大到 14.283μH 时,电感量增大至 9.32 倍,发射 侧耦合机构测试点 2 处所受电磁力密度幅值减小到 原来的 36.03%。与前文基于相差调控的结构电磁力 平抑模型仿真一致,验证了本文提出的基于相差调 控的结构电磁力平抑方法的有效性。

图 13 发射侧耦合机构不同测试点处电磁力密度的 方均根值

Fig.13 RMS of electromagnetic force at different test points of coupling mechanism on transmitting side

不同可调支路电感值下接收侧耦合机构不同测 试点处所受电磁力密度的方均根值对比如图 14 所 示。由于无线电能传输系统耦合机构的对称性,接

方均根值

Fig.14 RMS of electromagnetic force at different test points of coupling mechanism on receiving side

收侧耦合机构各测试点所受电磁力密度的分布和变 化趋势与发射侧一致。同时当串接的可调电感值相 同时,接收侧某测量点处所受电磁力密度的方均根 值小于发射侧对应的测量点处所受电磁力密度的方均根 值。以电感量 14.283μH 为例,发射侧和接收侧 耦合机构测试点 3 处所受电磁力密度的方均根值分 别为 4.4N/mm²、2.8N/mm²,与基于相差调控的结构 电磁力平抑模型仿真结果一致,验证了该平抑方法 的可行性。

为验证本文提出的基于相差调控的无线电能 传输系统耦合机构结构电磁力平抑方法的有效性, 搭建无线电能传输系统测试平台,利用示波器测量 流经两发射线圈支路的电流,并通过高频测力探头 对无线电能传输系统耦合机构受力进行测量。对实 验数据分析可知,通过增大串接在某发射线圈支路 的可调支路电感值,一方面将引起流经两发射线圈 的电流有效值及两线圈电流之间的相位关系发生 改变,具体表现为流经两发射线圈的电流有效值均 减小,其中未串接可调支路电感的线圈电流下降幅 度大于串接可调支路电感的线圈支路电流,同时串 接可调支路电感的线圈支路电流滞后于未串接可 调支路电感的线圈支路电流的相位增大:另一方面 将引起无线电能传输系统耦合机构受力情况发生 改变,具体表现为各测试点处结构电磁力密度均呈 现下降趋势,且存在相同分布规律,即中间高两边 低的特性,同时临近耦合机构外侧的下降速率低于 临近耦合机构内侧。与前文基于相差调控的结构电 磁力平抑模型仿真结果一致,验证了该平抑方法的 可行性。

4 结论

本文为削弱结构电磁力对无线电能传输系统耦 合机构的影响,提出一种基于相差调控的结构电磁 力平抑方法。利用双线并行型耦合机构,通过调节 串接在某发射线圈的可调支路电感值,实现流经耦 合线圈的电流之间的相位错位,最终实现耦合机构 整体受力表达的削弱。

通过调节可调支路电感值,一方面可实现流经 两发射线圈支路的电流相位错位;另一方面会对系 统传输效率产生作用。相比较于未串接可调支路电 感的线圈支路,增大可调支路电感值,将导致流经 串接可调支路电感的线圈支路的电流幅值和滞后角 的增大。

搭建基于相差调控的结构电磁力平抑有限元仿

真模型,获得耦合机构所受结构电磁力随可调支路 电感的变化曲线。随着可调支路电感值的增大,所 受结构电磁力呈现下降趋势。以 m=0.2 为例,发射 侧耦合机构及接收侧耦合机构所受电磁力下降幅度 分别为 28.09%、29.48%,此时双线并行结构的无线 电能传输系统的传输效率为 91.61%。

利用无线电能传输系统测试平台,探究不同串接电感值下耦合机构所受结构电磁力变化情况。随着串接的可调电感值的增大,相同测试点处所受电磁力减小。以测试点2为例,当电感量由1.533μH 增大到14.283μH时,发射侧与接收侧耦合机构测 试点处所受电磁力密度幅值分别减小到原来的 36.3%、35.55%。

参考文献

- [1] 吴理豪,张波.电动汽车静态无线充电技术研究综述(上篇)[J].电工技术学报,2020,35(6):1153-1165.
 Wu Lihao, Zhang Bo. Overview of static wireless charging technology for electric vehicles: part I [J]. Transactions of China Electrotechnical Society, 2020, 35(6):1153-1165.
- [2] 卿晓东,苏玉刚.电场耦合无线电能传输技术综述[J].电工技术学报,2021,36(17):3649-3663.
 Qing Xiaodong, Su Yugang. An overview of electric-field coupling wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3649-3663.
- [3] 薛明,杨庆新,章鹏程,等.无线电能传输技术应用研究现状与关键问题[J].电工技术学报,2021, 36(8):1547-1568.
 Xue Ming, Yang Qingxin, Zhang Pengcheng, et al. Application status and key issues of wireless power transmission technology[J]. Transactions of China

Electrotechnical Society, 2021, 36(8): 1547-1568.

[4] 范兴明,莫小勇,张鑫.无线电能传输技术的研究
 现状与应用[J].中国电机工程学报,2015,35(10):
 2584-2600.

Fan Xingming, Mo Xiaoyong, Zhang Xin. Research status and application of wireless energy transmission technology[J]. Proceedings of the CSEE, 2015, 35(10): 2584-2600.

[5] 陈琛,黄学良,孙文慧,等.金属障碍物对磁耦合 谐振无线电能传输系统的影响[J].电工技术学报, 2014,29(9):22-26. Chen Chen, Huang Xueliang, Sun Wenhui, et al. Influence of metal obstacles on magnetically coupled resonant wireless energy transmission system[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 22-26.

- [6] 杨庆新,章鹏程,祝丽花,等.无线电能传输技术的关键基础与技术瓶颈问题[J].电工技术学报,2015,30(5):1-8.
 Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al. Key basic and technical bottlenecks of wireless energy transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8.
- [7] Mina-Casaran Juandavid, Navas Diegofernando, Echeverry Ibarra Diegofernando. Evaluación del nivel ruido audible en transformadores de distribución usando el método de presión sonora[J]. Revista Facultad de Ingeniería, 2017, 26(45): 71-82.
- [8] Ahn Hyun-mo, Oh Yeon-ho, Kim Joong-kyoung, et al. Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer[J]. IEEE Transactions on Magnetics, 2012, 48(2): 819-822.
- [9] Peng Shuai, Juergen B. Influence of material properties and geometric shape of magnetic cores on acoustic noise emission of medium-frequency transformers[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7916-7931.
- [10] Lin Fu, Zuo Shuguang, Deng Wenzhe, et al. Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7455-7466.
- [11] 李阳,张雅希,闫卓,等.磁耦合谐振式无线电能 传输系统阻抗分析与匹配电路设计方法[J].电工 技术学报,2016,31(22):12-18.
 Li Yang, Zhang Yaxi, Yan Zhuo, et al. Impedance analysis and matching circuit design method for magnetically coupled resonant wireless energy transmission system[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 12-18.
- [12] 张献,杨庆新,崔玉龙,等.大功率无线电能传输
 系统能量发射线圈设计、优化与验证[J].电工技术
 学报,2013,28(10):12-18.
 Zhang Xian, Yang Qingxin, Cui Yulong, et al. Design,

optimization and verification of energy transmit coils for high power wireless energy transmission systems[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 12-18.

- [13] 李中启,李上游,李晶,等.动态无线电能传输系 统多接收线圈正反串联结构的互感计算与优化[J]. 电工技术学报,2021,36(24):5153-5164.
 Li Zhongqi, Li Shangyou, Li Jing, et al. Mutual Inductance calculation and optimization of multireceiver positive and negative series coil structure in dynamic wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5153-5164.
- [14] 卢伟国,陈伟铭,李慧荣,等.多负载多线圈无线 电能传输系统各路输出的恒压特性设计[J].电工 技术学报,2019,34(6):23-33.
 Lu Weiguo, Chen Weiming, Li Huirong, et al. Multiload constant voltage design for multi-load and multicoil wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(6):23-33.
- [15] Kim D, Kim M, Yoo J, et al. Magnetic resonant wireless power transfer for propulsion of implantable micro-robot[J]. Journal of Applied Physics, 2015, 117(17): 17E712.1-17E712.4.

- [16] Dongwook K, Jaehyoung P, Kibeom K, et al. Propulsion and control of implantable micro-robot based on wireless power transfer[C]//2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, 2015: 1-4.
- [17] Zhang Xian, Ni Xuejing, Wei Bin, et al. Characteristic analysis of electromagnetic force in a high-power wireless power transfer system[J]. Energies, 2018, 11(11): 3088.
- [18] Zhang Xian, Yuan Zhaoyang, Yang Qingxin, et al. High-frequency electromagnetic force characteristics on electromagnetic shielding materials in wireless power transmission system[C]//2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, Chongqing, 2017: 1-5.

作者简介

```
王奉献 男,1995年生,博士研究生,研究方向为无线电能传输技术。
```

- E-mail: fx-wang@outlook.com
- 张 献 男,1983年生,教授,博士生导师,研究方向为无线电能 传输技术、工程电磁场与磁技术。
- E-mail: zxshow1983@163.com (通信作者)

(编辑 赫蕾)